Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 42(7): 1463-1471, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37310141

RESUMO

When performing basic and translational laboratory studies with aquatic organisms, particularly for bioaccumulation, toxicity, or biotransformation experiments, it is imperative to control the route and dose of exposure. Contamination of feed and the organisms prior to study could alter the results of an experiment. Furthermore, if organisms not exposed in the lab are used for quality assurance/quality control, then blank levels, method detection limits, and limits of quantitation can be affected. In an effort to determine the magnitude of this potential issue for exposure studies involving Pimephales promelas, we analyzed a suite of 24 per- and polyfluoroalkyl substances (PFAS) in four types of feed from three different companies and in organisms from five aquaculture facilities. Contamination with PFAS was found in all types of materials and organisms from all aquaculture farms. The most frequently detected PFAS in fish feed and aquaculture fathead minnows were perfluorocarboxylic acids and perfluorooctane sulfonate (PFOS). Concentrations of total and individual PFAS in feed ranged from nondetect to 76 ng/g and from nondetect to 60 ng/g, respectively. Fathead minnows were contaminated with PFOS and perfluorohexane sulfonate as well as several perflourocarboxylic acids. Concentrations of total and individual PFAS ranged from 1.4 to 351 ng/g and from nondetect to 328 ng/g, respectively. The PFOS measured in food was primarily the linear isomer, consistent with greater bioaccumulation of that isomer in organisms raised as fish food. Future studies are necessary to define the extent of PFAS contamination in aquatic culture facilities and aquaculture production operations. Environ Toxicol Chem 2023;42:1463-1471. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Ácidos Alcanossulfônicos , Cyprinidae , Fluorocarbonos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Ácidos Alcanossulfônicos/análise , Cyprinidae/metabolismo , Aquicultura , Fluorocarbonos/análise
2.
Environ Sci Technol Lett ; 9(4): 320-326, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37599856

RESUMO

Facemasks are important tools for fighting against disease spread, including Covid-19 and its variants, and some may be treated with per- and polyfluoroalkyl substances (PFAS). Nine facemasks over a range of prices were analyzed for total fluorine and PFAS. The PFAS compositions of the masks were then used to estimate exposure and the mass of PFAS discharged to landfill leachate. Fluorine from PFAS accounted only for a small fraction of total fluorine. Homologous series of linear perfluoroalkyl carboxylates and the 6:2 fluorotelomer alcohol indicated a fluorotelomer origin. Inhalation was estimated to be the dominant exposure route (40%-50%), followed by incidental ingestion (15%-40%) and dermal (11%-20%). Exposure and risk estimates were higher for children than adults, and high physical activity substantially increased inhalation exposure. These preliminary findings indicate that wearing masks treated with high levels of PFAS for extended periods of time can be a notable source of exposure and have the potential to pose a health risk. Despite modeled annual disposal of ~29-91 billion masks, and an assuming 100% leaching of individual PFAS into landfill leachate, mask disposal would contribute only an additional 6% of annual PFAS mass loads and less than 11 kg of PFAS discharged to U.S. wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...